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Motivation

In many situations it is difficult, or impossible, to measure the phases.
Only the intensities are available for imaging!

X-ray cristalography
THz radar & imaging systems
Diffraction imaging
Astronomical imaging
...

COHERENT WAVE PROPAGATION
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The significance of phase

Atletico de Madrid

Real Madrid

Figure: Atletico de Madrid soccer shield (top) and Real Madrid soccer shield
(bottom).
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Motivation

FFT Magnitude ATM FFT Phase ATM

FFT Magnitude RM FFT Phase RM

Figure: Magnitudes and phases of Atletico (top row) and Real Madrid
(bottom row) soccer shields.
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Motivation

(ATM magnitude)x(RM Phase)

(RM magnitude)x(ATM Phase)

Figure: It’s not about the intensity. What matters is the phase!!
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The phase retrieval problem

Mathematically ...

... the phase retrieval problem consists of recovering an unknown
signal x[n] from the amplitude |x̂[k]| of its Fourier transform

x̂[k] =

N∑
n=1

x[n] e−i2πkn/N , k = 1, . . . , N .
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The phase retrieval problem

Mathematically ...

... the phase retrieval problem consists of finding the phases that
satisfy a set of linear constraints for the measured amplitudes

| < x, ak > |2 = |bk|2 .
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The phase retrieval problem: algorithms

R.W. Gerchberg and W.O. Saxton, A practical algorithm for the
determination of phase from image and diffraction plane pictures,
Optik 35, 237-246 (1972).

J.R. Fienup, Reconstruction of an object from the modulus of its
Fourier transform, Optics Letters 3, 27-29 (1978).

Project a guess image to the spatial domain and frequency domain alternatively, and use the

known information of the original image to modify the projection in each step.

These algorithms require image prior and convergence is not
guarantee!!!
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The phase retrieval problem

Goal: To devise other approaches that guarantee convergence to the
exact solution without prior information.
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The phase retrieval problem

Assume that imaging can be formulated as a linear inverse problem

Af̂ρ = bf̂ .

Here, Af̂ ∈ CN×K is the model matrix that relates the unknown
vector ρ ∈ CK to the data vector bf̂ ∈ CN . Usually N � K!
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The phase retrieval problem

Imaging WITH phases

Find ρ ∈ CK from
Af̂ρ = bf̂ ,

given the data vector bf̂ ∈ CN with both amplitudes and phases.
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The phase retrieval problem

When only the intensities can be recorded, the data are given by
the vector

βf̂ = diag(bf̂ b
∗
f̂
) ∈ RN .

Imaging WITHOUT phases

The basic equation in intensity-based imaging is

diag(Af̂ρρ
∗A∗

f̂
) = βf̂ .

This problem is nonlinear, nonconvex in the vector ρ ∈ CK . _̈
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A convex approach

KEY: Replaced the nonlinear vector problem by a linear matrix one. Introduce

The decision variable X := ρρ∗ ∈ CK×K , and the

operator L
f̂

: CK×K → RN , such that L
f̂
(X ) := diag(A

f̂
XA∗

f̂
).

Imaging WITHOUT phases

Then, at the matrix level, the equation in intensity-based imaging is

Lf̂ (X ) = βf̂ .

The quadratic measurements on ρ become linear on X := ρρ∗!
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A convex approach

Rank minimization
Solve the following rank minimization problem

min rank(X ) subject to Lf̂ (X ) = βf̂ , X ≥ 0.

This problem is still nonconvex!!! _̈

Relax!
Solve the following trace minimization problem

min trace(X ) subject to Lf̂ (X ) = bI , X ≥ 0.

This makes the problem convex and solvable in polynomial time. ¨̂
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A convex approach

A. Chai, M. Moscoso, G. Papanicolaou, Array imaging using
intensity-only measurements, Inverse Problems 27 (2011).

E. J. Candes, Y. C. Eldar, T. Strohmer, V. Voroninski, Phase
Retrieval via Matrix Completion, SIAM Journal on Imaging
Sciences 6 (2013).
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A convex approach: algorithm

Iterative algorithm for min trace(X ) s. t. Lf̂ (X ) = bI .

Require: Set Y−1 = Y0 = 0 and t−1 = t0 = 1, and pick the initial
value for step size β.
repeat

Compute weight w = tk−1−1
tk

.
Compute Wk = (1 + w)Yk − wYk−1.
Compute the matrix G = W − βL∗

f̂(ω)
(Lf̂(ω)(W )− bI(ω)).

Set Yk+1 = Sτ (G).

Compute tk+1 =
1+
√

1+4t2k
2 .

until Convergence

Gradient descent method with singular value thresholding
Sτ (G) = Ûdiag(σ − τ)+V̂

∗
.
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A convex approach: algorithm

J.F. Cai, E.J. Candès, and Z. Shen, A Singular Value
Thresholding Algorithm for Matrix Completion, SIAM J. Optim. 20
(2008).

K.C. Toh and S. Yun, An accelerated proximal gradient algorithm
for nuclear norm regularized least squares problems, Pacific J.
Optimization 6 (2010).
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Numerical simulations: active array imaging

Let us consider the problem of active array imaging ...
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Schematic for active array imaging
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Figure: We want to determine the location and reflectivities of (small or
extended) reflectors by sending probing signals from the array and recording
the backscattered signals. Only the intensities are recorded, in our case!
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Data model

We consider a region of interest: the Image Window IW.
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We define a grid yj , j = 1, . . . ,K, a discretization of the IW and seek
to determine the reflectivities on this grid ρj = ρ(yj), j = 1, . . . ,K.

Our unknown is the vector ρ ∈ CK ,

ρ = [ρ1, . . . , ρK ]t ∈ CK , ρj = ρ(yj), j = 1, . . . ,K.
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The data model

In the Born approximation, the response at xr due to the signal sent
from xs is given by

P̂rs(ω) =

K∑
j=1

ρjĜ0(xr,yj , ω)Ĝ0(yj ,xs, ω) ,

where Ĝ0(x,y, ω) = eiκ|x−y|/(4π|x− y|).

We collect all the data in the response matrix

P̂ (ω) = [P̂rs(ω)]Nr,s=1.
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The data model

If f̂ = [f̂1, . . . , f̂N ]T is the illumination vector, then the data bf̂
(including phases!!!) at the array is given by

bf̂ = P̂ f̂ .

Through P̂ f̂ , we define the model matrix

Af̂ρ = P̂ f̂ ,

with [
Af̂
]
rk

= G(xr,yk, ω)

N∑
s=1

f̂sG(yk,xs, ω) .

for r = 1, . . . , N, k = 1, . . . ,K.
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Numerical simulations: examples I
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Figure: (a) Original configuration. 21 transducers. 10× 10 pixels in IW. Grid
points separated by 1. a/L = 1. Single illumination. (b) Numerical result by
solving trace minimization with no noise.

In all the images we normalize the spatial units by λ.
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Numerical simulations: examples II
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Figure: Same as before with 4 scatterers. No noise.
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Numerical simulations: examples III
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Figure: Same as before with 65 scatterers. No noise.

Sparsity is not required!
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Numerical simulations: examples IV
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Figure: 0.5% noise. (a) Original configuration. (b) 1 illumination. (c) 5
illuminations. (d) 10 illuminations.

The number of illuminations is increased to make the method robust.
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A convex approach

Goal accomplished: The method guarantees exact reconstructions
without image prior.

Drawback: It is VERY computationally expensive for large scale
problems. Images with K of pixels require the solution of a K ×K
optimization problem.

Next goal: To devise another approach that guarantees convergence
to the exact solution and, at the same time, keep the size of the
problem small so the solution can be found more efficiently.
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The time reversal operator

Main idea
Imaging with intensity-only can be carried out using the time reversal
operator

M̂ = P̂
∗
P̂ ,

which can be obtained from intensity measurements using an
appropriate illumination strategy and the polarization identity.

The images can be formed using its SVD.
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The time-reversal operator with the polarization identity

Note that for a given illumination vector

〈f̂(ω),M̂(ω)f̂(ω)〉 = 〈f̂(ω), P̂
∗
(ω)P̂ (ω)f̂(ω)〉

= 〈P̂ (ω)f̂(ω), P̂ (ω)f̂(ω)〉 = ‖P̂ (ω)f̂(ω)‖2,

so the quadratic form M̂(ω) is determined by intensity only
measurements.

Use the polarization identity

2〈x,y〉 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2 + i
(
‖x− iy‖2 − ‖x‖2 − ‖y‖2

)
.
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The time-reversal operator with the polarization identity

The i-th entry in the diagonal Mii is just the total power received at
the array when only the i-th transducer fires a signal.

The off-diagonal terms Mij , i 6= j can be found as follows:

Re(Mij(ω)) = Re(Mji(ω)) =
1

2

(
‖P̂ (ω)êi+j‖2 − ‖P̂ (ω)êi‖2 − ‖P̂ (ω)êj‖2

)

Im(Mij(ω)) = −Im(Mji(ω)) =
1

2

(
‖P̂ (ω)êi−ij‖2 − ‖P̂ (ω)êi‖2 − ‖P̂ (ω)êj‖2

)
using the illumination vectors êi+j = êi + êj and êi−ij = êi − iêj .

Conclusion: With enough illuminations (N2 of them) we can obtain
M̂(ω). Since only the total power received at the array is involved,
the method very robust.
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Imaging without phases

Key ideas:
(i) The time reversal matrix M̂ = P̂

∗
P̂ and P̂ , share the same right

singular vectors.

P̂ (ω) = Û(ω)Σ(ω)V̂
∗
(ω) =

M̃∑
j=1

σj(ω)Ûj(ω)V̂
∗
j (ω) ,

M̂(ω) = V̂ (ω)Σ
2
(ω)V̂

∗
(ω) =

M̃∑
j=1

σ
2
j (ω)V̂j(ω)V̂

∗
j (ω) .
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Imaging without phases

Key ideas:
(i) The time reversal matrix M̂ = P̂

∗
P̂ and P̂ , share the same right

singular vectors. Hence,
MUSIC can be applied, without any modification, once M̂ has
been obtained.

MUSIC algorithm

A scatterer location corresponds to a peak of the functional

I(ys) =
1∑N

j=M+1 |ĝ
T
0 (ys)V̂j |2

, s = 1, . . . , K.
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Imaging without phases

Key ideas:
(i) The time reversal matrix M̂ = P̂

∗
P̂ and P̂ , share the same right

singular vectors. Hence,

MUSIC can be applied, without any modification, once M̂ has
been obtained.
Use the right singular vectors of M̂ as illumination vectors, then
the data on the array is known up to a global phase.

P̂
∗
(ω)Ûj(ω) = σj(ω)V̂j(ω) , P̂ (ω)V̂j(ω) = σj(ω)Ûj(ω) , j = 1, . . . , N.

Since P̂ (ω) is complex-valued but symmetric, then Ûj(ω) = eiθj V̂ j(ω). Hence,

P̂ (ω)V̂j(ω) = σj(ω)e
iθj V̂j(ω) , j = 1, . . . , N,

for an unknown global phase eiθj which is different for each V̂j(ω).

Then, use optimization-based imaging methods to exploit the
sparsity of the scatterers in the IW.
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Imaging without phases

Advantages:
Simple and efficient
Does not need prior information
Guarantees exact recovery in the noise-free case
It is robust with respect to additive noise.

Drawback: The data acquisition process is expensive (N2)... but can
be minimized

using matrix completion, or
edge illuminations, or
instead use the intensities at each receiver (3N − 2), or
Fresnel and Fraunhofer regimes (exactly 6).

Corollary (Fraunhofer): A "vector" can be determined from the
absolute value of its Fourier coefficients (its DFT) if six versions of it
are known, regardless of its size.
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Imaging without phases

A. Novikov, M. Moscoso, and G. Papanicolaou, Illumination
Strategies for Intensity-Only Imaging, SIAM Journal on Imaging
Sciences 8 (2015).

M. Moscoso, A. Novikov, and G. Papanicolaou, Coherent Imaging
without Phases, SIAM Journal on Imaging Sciences 9 (2016).
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Numerical experiments
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Figure: Noiseless data. Reference image (left), MUSIC (middle), MMV
formulation (right). IW of size 30λ× 30λ which is at a distance L = 100λ from
the linear array. 100 transducers one wavelength λ apart.
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Numerical experiments
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Figure: Same as previous figure but with 10% noise.
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Numerical experiments
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Figure: Same as previous figure but with 20% noise.
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Multiple frequency imaging

Imaging with M̂ at a single frequency is not robust relative to small
perturbations in the unknown phases.

We can image robustly if we
have interferometric data (Borcea-Papanicolaou-Tsogka 05’,06’)

d((~xr, ~xr′), (~xs, ~xs′), (ω, ω
′)) = P (~xr, ~xs;ω)P (~xr′ , ~xs′ ;ω

′) ,

and image interferometrically using

ICINT (~y
s
) =

∑
~xs, ~xs′

|~xs − ~xs′ | ≤ Xd

∑
~xr, ~xr′

|~xr − ~xr′ | ≤ Xd

∑
ωl, ωl′

|ωl − ωl′ | ≤ Ωd

d((~xr, ~xr′ ), (~xs, ~xs′ ), (ωl, ωl′ ))

×G0(~xr, ~y
s;ωl)G0(~xs, ~y

s;ωl)G0(~xr′ , ~y
s;ωl′ )G0(~xs′ , ~y

s;ωl′ ).

Remark: Robustness comes at the cost of loss in resolution:
λ0L/a→ λ0L/Xd in cross-range, and c0/B → c0/Ωd in range.
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Multiple frequency imaging
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×G0(~xr, ~y
s;ωl)G0(~xs, ~y

s;ωl)G0(~xr′ , ~y
s;ωl′ )G0(~xs′ , ~y

s;ωl′ ).

Or, restricting the data to a single receiver, using

ISRINT (~y
s
) =

∑
~xs, ~xs′

|~xs − ~xs′ | ≤ Xd

∑
ωl, ωl′

|ωl − ωl′ | ≤ Ωd

d((~xr, ~xr), (~xs, ~xs′ ), (ωl, ωl′ ))

×G0(~xr, ~y
s;ωl)G0(~xs, ~y

s;ωl)G0(~xr, ~y
s;ωl′ )G0(~xs′ , ~y

s;ωl′ ) .
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Numerical experiments: random medium

One realization of the random medium (correlation length
l = 100λ0, strength of the fluctuations σ = 4 · 10−4).
Measurements are for multiple frequencies covering a total
bandwidth of 120THz centered at f0 = 600 THz.
Array size a = 500λ0 (0.25 mm) with N = 81 array elements, and
distance to the IW L = 10000λ0 (5mm depth).
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Weak random medium

The random fluctuations of the wave speed are modeled as

1

c2(x)
=

1

c20

(
1 + σµ(

x

l
)

)
.

c0 denotes the average speed
σ denotes the strength of the fluctuations with correlation length l
µ(·) is a stationary random process with zero mean and
normalized autocorrelation function R(|x− x′|) = E(µ(x)µ(x′)),
so that R(0) = 1, and

∫∞
0
R(r)r2dr <∞.

We use the random phase model which characterizes wave
propagation in the high-frequency regime in random media with
weak fluctuations σ � 1 and large correlation lengths l compared
to the wavelength λ.
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Imaging results random medium

46 equally spaced frequencies in B = [540, 660]THz.

Left: Ωd = B, Xd = a. Right: Ωd = 0.12B, Xd = 0.25a.

Robust, statistically stable images are obtained with, however,
reduced resolution.
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Multiple frequency imaging

M. Moscoso, A. Novikov, G. Papanicolaou, and C. Tsogka,
Multifrequency Interferometric Imaging with Intensity-Only
Measurements, SIAM Journal on Imaging Sciences 10 (2017).
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Statistical Stability

Reducing the data to nearby sources and nearby frequencies gives
statistically stability with respect to perturbations in the phases.

SRINT is equivalent to CINT for one receiver (which assumes phases
are recorded).

L. Borcea, G. Papanicolaou and C. Tsogka, Interferometric array
imaging in clutter, Inverse Problems 21 (2005).

L. Borcea, G. Papanicolaou and C. Tsogka, Adaptive
interferometric imaging in clutter and optimal illumination, Inverse
Problems 22 (2006).

L. Borcea, G. Papanicolaou and C. Tsogka., Coherent
interferometric imaging in clutter, Geophysics 71 (2006).

L. Borcea, J. Garnier, G. Papanicolaou and C. Tsogka, Enhanced
statistical stability in coherent interferometric imaging, Inverse
Problems 27 (2011).
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Concluding remarks

The convex approach guarantees exact recovery but it is not
feasible for large scale problems.
Array imaging with intensities only in homogeneous media can
be as good as imaging with full information if we control the
illuminations. Illumination diversity is the key.
In weak random media, imaging with intensities-only using single
receiver is stable. We use interferometric data so
medium-induced phase perturbations cancel for nearby
frequencies and illuminations.
As a special case, we know how to recover exactly a vector from
the absolute values of six versions of its DFT, in the imaging
context, regardless of its size.
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Concluding remarks

Thanks!
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